Complex Geometry Exercises

Week 8

Exercise 1.

- (i) Compute the signature of a closed complex surface S with $\kappa(S) = -\infty$.
- (ii) Prove that $\widetilde{S}_n = \#_n \mathbb{CP}^2$ cannot be Kähler for $n \geq 2$.

Exercise 2. Consider the complex torus $\mathbb{T}_{\Lambda} = \mathbb{C}^2/\Lambda$ for a lattice Λ .

- (i) Find Λ such that the only line bundle in S_{Λ} that admits a holomorphic structure is the trivial one.
- (ii) Compute $Pic(\mathbb{T}_{\Lambda})$.
- (iii) Prove (or convince yourself) that this is in fact true for a generic Λ .
- (iv) Conclude that most tori in dimensions ≥ 2 are not projective.

Exercise 3. Let X be a complex manifold such that $h^{2,0}(X) = 0$. Show that X is projective. Conclude that Calabi-Yau manifolds (in the strict sense) of dimension ≥ 3 are all projective.

Exercise 4. Let X be a Kähler manifold, with $\dim(X) \geq 4$, and consider $\iota : Y \to X$ a hypersurface with $\mathcal{O}(Y)$ positive. Assuming $H^2(X,\mathbb{Z})$ and $H^2(Y,\mathbb{Z})$ are torsion-free, prove that $\iota^* : \operatorname{Pic}(X) \to \operatorname{Pic}(Y)$ is an isomorphism.

Exercise 5. Let Σ be a Riemann surface. Prove that

$$c_1(K_{\Sigma}) = 2g(\Sigma) - 2.$$

(**Recall:** For a conformal metric g, the Gaussian curvature is $K = \Delta \log(g)$.)

Exercise 6. Let Σ_d be a smooth hypersurface in \mathbb{CP}^2 . Show that

$$g(\Sigma_d) = \frac{(d-1)(d-2)}{2} .$$